Mechanical basis of bone strength: influence of bone material, bone structure and muscle action

نویسندگان

  • N.H. Hart
  • S. Nimphius
  • T. Rantalainen
  • A. Ireland
  • A. Siafarikas
  • R.U. Newton
چکیده

This review summarises current understanding of how bone is sculpted through adaptive processes, designed to meet the mechanical challenges it faces in everyday life and athletic pursuits, serving as an update for clinicians, researchers and physical therapists. Bone's ability to resist fracture under the large muscle and locomotory forces it experiences during movement and in falls or collisions is dependent on its established mechanical properties, determined by bone's complex and multidimensional material and structural organisation. At all levels, bone is highly adaptive to habitual loading, regulating its structure according to components of its loading regime and mechanical environment, inclusive of strain magnitude, rate, frequency, distribution and deformation mode. Indeed, the greatest forces habitually applied to bone arise from muscular contractions, and the past two decades have seen substantial advances in our understanding of how these forces shape bone throughout life. Herein, we also highlight the limitations of in vivo methods to assess and understand bone collagen, and bone mineral at the material or tissue level. The inability to easily measure or closely regulate applied strain in humans is identified, limiting the translation of animal studies to human populations, and our exploration of how components of mechanical loading regimes influence mechanoadaptation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Physicochemical Characterization of nano-clinoptilolite/-TCP /gelatin Scaffold and its Application in Periodontics

Background and aim: Due to the composite structure of the jaw bone, gelatin and beta-calcium phosphate (b-TCP) biomaterials have been used repeatedly in bone tissue engineering. Despite the desirable properties of scaffolds made, their application has been limited due to their poor mechanical properties and high degradability. The aim of this study was to investigate the effect of clinoptilolit...

متن کامل

Evaluation of Compressive Mechanical Properties of the Radial Bone Defect Treated with Selected Bone Graft Substitute Materials in Rabbit

Objective- To determine the effect of selected bone graft on the compression properties of radialbone in rabbit.Design- Experimental in vivo study.Animals- A total of 45 adult male New Zealand white rabbits.Procedures- The rabbits were anesthetized and a one-cm-full thickness piece of radial bone wasremoved using oscillating saw in the all rabbit. The rabbits were divided into 5 groups on theba...

متن کامل

Surgical Excision as the First Therapeutic Choice in Single-muscle Hemangiomas: a Case Series

Background: Conservative management is generally the primary treatment for intramuscular hemangimas. However,many patients will require surgery later in their life, after suffering a long period of pain. We aimed to evaluate theoncologic and functional outcomes of surgery as the initial treatment of single-muscle hemangiomas.Methods: Medical profiles of 17 patients with hemang...

متن کامل

The preventive and therapeutic roles of phytoestrogen α-Zearalanol on osteoporetic rats due to ovariectomization

Objective(s): The aim of this study was to observe the influence of phytoestrogen α-Zearalanol on ovariectomy-induced postmenopausal osteoporosis in rats. Materials and Methods:40 SD female rats were randomly divided into four groups: Sham group, OVX group (ovariectomized and fed estrogen), α-Zearalanol group (ovariectomized and fed α-Zearalanol) and untreated group (ovariectomized). Three wee...

متن کامل

Synthesis and characterization of fiber reinforced polymer scaffolds based on natural fibers and polymer for bone tissue engineering application

A wide range of materials and scaffolding fabrication methods for bone tissue engineering have beenexplored recently. Fiber reinforced polymers (FRP) system appears to be a suitable system. By the exclusiveuse of biocompatible or bio-absorbable polymers and fibers, novel generation of scaffolds for applicationsin tissue engineering can be prepared. Mulberry Silk as highlighted...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 17  شماره 

صفحات  -

تاریخ انتشار 2017